На правах рукописи

ГАНИН Антон Сергеевич

ОКИСЛИТЕЛЬНОЕ АМИДИРОВАНИЕ И ТРИФЛАМИДИРОВАНИЕ НЕПРЕДЕЛЬНЫХ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ

Специальность 02.00.03 – органическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Иркутск – 2020

Работа выполнена в Федеральном государственном бюджетном учреждении науки Иркутском институте химии им. А. Е. Фаворского Сибирского отделения РАН

Научный руководитель	доктор химических наук, профессор Шаинян Баграт Арменович				
Официальные оппоненты:	Бардин Вадим Викторович, доктор химических наук, ФГБУН Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН, лаборатория галоидных соединений, ведущий научный сотрудник				
	Сокольникова Татьяна Викторовна, кандидат химических наук, ФГБОУ ВО «Иркутский государственный университет», кафедра теоретической и прикладной органической химии и полимеризационных процессов, доцент				
Ведущая организация	ФГБУН Институт химической кинетики и горения им. В. В. Воеводского СО РАН,				

г. Новосибирск

Защита состоится 8 декабря 2020 года в 9 часов на заседании диссертационного совета Д 003.052.01 на базе Иркутского института химии им. А. Е. Фаворского СО РАН по адресу: 664033, Иркутск, ул. Фаворского, 1.

С диссертацией можно ознакомиться в научно-технической библиотеке Иркутского института химии им. А. Е. Фаворского СО РАН (ИрИХ СО РАН) и на сайте http://www.irkinstchem.ru.

Отзывы на автореферат в 2-х экземплярах просим направлять по адресу: 664033, Иркутск, ул. Фаворского, 1, ученому секретарю диссертационного совета; e-mail: <u>dissovet@irioch.irk.ru</u>

Автореферат разослан «__» ____ 2020 г.

Ученый секретарь диссертационного совета, к.х.н.

Арбузова Светлана Николаевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Химия фторорганических соединений, область применения которых постоянно расширяется, является перспективной и активно развивающейся частью современной органической химии. Их синтез и исследование свойств привели к важным теоретическим и практическим результатам. Так, красители, содержащие в своем составе трифторметильную группу, обладают повышенной стойкостью к свету, кислороду воздуха, механическим воздействиям. В медицине давно применяются водные эмульсии перфторированных эфиров и аминов, являющихся активными переносчиками кислорода (перфторан), анестетики вида CF₃CHXY (X, Y = галоген), депрессанты (трифтораминазин) и др. Уникальные свойства фторорганических соединений обусловлены высокой электроотрицательностью и малым размером атома фтора и перфторалкильных групп, которые обусловливают их специфическую реакционную способность, отличную от таковой у нефторированных аналогов.

Важной частью фторорганической химии является химия трифлатов – производных одной из сильнейших кислот – трифторметансульфоновой (CF₃SO₃H). Трифлаты металлов применяются как водно-толерантные кислоты Льюиса в катализе, а трифлимидные соли – как ионные жидкости, незамерзающие при очень низких температурах.

Трифторметансульфонамид (трифламид, $CF_3SO_2NH_2$) и его аналоги представляют собой самый многочисленный класс производных трифторметансульфоновой кислоты, обладающих высокой NH-кислотностью, каталитической активностью и специфическими свойствами. В обзоре, посвященном химии трифламида (В.А. Shainyan, L.L. Tolstikova, *Chem. Reviews*, 2013) был сделан вывод, что сильный электроноакцепторный эффект группы SO_2 подводит сульфонамиды к такому порогу реакционной способности, за которым даже умеренный эффект группы CF_3 приводит к переходу количественных отличий в качественные в сравнении с нефторированными аналогами. Таким образом, сочетая в себе специфику фторорганических соединений и сульфонамидов, трифламиды являются перспективными и интересными объектами исследований в рамках задач современной теоретической и синтетической органической химии.

Настоящая диссертация представляет собой продолжение исследований химии производных трифламида, проводимых в лаборатории элементоорганических соединений ИрИХ СО РАН в соответствии с планами НИР (№ рег. АААА-А16-116112510006-4). Часть исследований была поддержана грантами РФФИ: № 16-33-00313-мол_а, 17-03-00213 а, 18-33-20131 мол а-вед.

Цель работы: систематическое изучение реакций окислительного присоединения трифламида и его аналогов к алкенам и аллилсодержащим гетероатомным субстратам; изучение строения и реакционной способности образующихся продуктов.

В рамках данной цели были решены следующие задачи:

- 1. Исследование особенностей взаимодействия *N*-фенилтрифторметансульфонамида и *N*,*N*'-бис(трифторметансульфонамидо)метана с алкенами в окислительных условиях.
- Изучение реакции трифламида с аллилсодержащими гетероатомными соединениями в окислительных условиях.
- 3. Изучение реакции трифламида, трифторацетамида и аренсульфонамидов с Nаллилпроизводными трифламида в окислительных условиях.

Научная новизна и практическая значимость работы

- Впервые изучены реакции N-фенилтрифламида с алкенами в системе (*t*-BuOCl + NaI). Вначале идет электрофильное иодирование реагента в бензольное кольцо, а затем полученный N-(иодофенил)трифламид реагирует с алкенами как амидирующий агент.
- Впервые изучено окислительное амидирование N-аллил- и N,N-диаллилтрифламида. Обнаружено принципиально различное направление их реакций с трифламидом, аренсульфонамидами и трифторацетамидом.
- Осуществлена однореакторная сборка 1,5-диазокановых и 3,7,9-триазабицикло[3.3.1]нонановых циклов в окислительной реакции N,N-диаллилтрифламида с трифламидом.
- На основе реакции N-аллилтрифламида с аренсульфонамидами и карбоксамидами синтезирован 2,5-бис(хлорметил)-1,4-бис[(трифторметил)сульфонил]пиперазин.
- Впервые исследовано трифламидирование аллиловых эфиров и аллилсиланов в разных окислительных системах. Показано, что аллилсиланы претерпевают десилилирование.
- Получен широкий ряд N-трифторметилсульфонилзамещенных амидинов, линейных и циклических аминоэфиров. Для некоторых продуктов изучено равновесие между различными типами ассоциатов в разных фазах.
- Разработан метод синтеза имидазолинов путем гетероциклизации β-бромзамещенных амидинов под действием оснований в мягких условиях с близкими к количественным выходами.

Достоверность и надежность результатов обеспечена использованием современных методов синтеза, тщательного разделения многокомпонентных смесей продуктов с помощью колоночной хроматографии, и идентификации и анализа синтезированных соединений методами спектроскопии ЯМР на ядрах ¹H, ¹³C, ¹⁹F, ²⁹Si, масс спектроскопии, в том числе высокого разрешения (HRMS), рентгеноструктурного анализа, ИК спектроскопии, элементного анализа.

Личный вклад автора. Включенные в диссертацию результаты получены лично автором или при его непосредственном участии. Соискатель самостоятельно планировал эксперименты, проводил синтез, разделение, выделение и очистку продуктов, подготовку образцов для анализа, принимал активное участие в обсуждении результатов, интерпретации спектральных данных, в подготовке и написании публикаций.

Апробация работы и публикации. Отдельные результаты настоящей работы были представлены на Всероссийских и Международных конференциях: «V научные чтения, посвященные памяти академика А. Е. Фаворского» (Иркутск, 2017); XX научнопрактическая конференция «Химия и химическая технология в XXI веке» имени профессора Л.П. Кулёва (Томск, 2019); «VI научные чтения, посвященные памяти академика А. Е. Фаворского» (Иркутск, 2020). По материалам диссертации опубликованы 6 статей и тезисы 3 докладов.

Объем и структура работы. Диссертация изложена на 139 страницах. Первая глава (литературный обзор) посвящена обобщению и анализу существующих подходов к синтезу сульфонамидных соединений путём реакций сульфонамидов с непредельными соединениями под действием окислителей. Результаты собственных исследований представлены и обсуждены во второй главе; необходимые экспериментальные подробности приведены в третьей главе. Завершается работа выводами и списком цитируемой литературы (155 наименований).

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

1. Взаимодействие *N*-фенилтрифторметансульфонамида с алкенами в системе *t*-BuOCl-NaI-MeCN

Реакцию *N*-фенилтрифламида **1** со стиролом **2**, *n*-хлорстиролом **3**, винилциклогексаном **4** и α -метилстиролом **5** проводили при охлаждении до -30° С. Продукты прямого трифламидирования обнаружены не были. Вместо этого, с помощью колоночной хроматографии были выделены продукты электрофильного ароматического моно- и бисиодирования амида **1** – *N*-(4-иодфенил)трифламид **6** и *N*-(2,4-дииодфенил)трифламид **7**, а также продукты иодсульфонамидирования алкенов **2**–**4**, но не амидом **1**, а его иодированными производными – *N*-[2-иод-1-арилэтил]-*N*-(4-иодфенил)трифламиды **8**, **10** или *N*-[2-иод-1-(циклогексил)этил]-*N*-(4-иодфенил)трифламид **12**, и 2-иодгидрины **9**, **13**, **14** (в реакции с алкенами **2**, **4**, **5**) или их изоэлектронный аналог 1-хлор-4-(1-хлор-2иодэтил)бензол **11** (в реакции с *n*-хлорстиролом **3**) (схема 1).

Схема 1

Таблица 1 Выходы (%) продуктов реакции *N*-фенилтрифламида **1** с алкенами (условия см. на схеме)

N⁰	Алкен	Соотношение амид 1 :алкен	6	7	8,10,12	9,11,13,14
	1 2	1:1	15	9	7	18
1		1:1 ^a	21	-	21	23
	1:2 ^a	10 ^в	_	83 ^в	7 ^в	
		1:2 ⁶	10 ^в	_	83 ^в	7 ^в
2	3	1:1	25	-	17	15
3	4	1:1	13	10	14	23
4	5	1:2	43 ^в	_	_	57 ^в

^аПри комнатной температуре; ⁶При комнатной температуре без обработки $Na_2S_2O_3$; ^вПо данным ¹Н ЯМР.

В реакции со стиролом продукты **6–9** получены в соотношении **6:7:8:9** = 7:2:5:5 с общим выделенным выходом после колоночной хроматографии ~50%. С *п*-хлорстиролом продукт **7** отсутствовал и соотношение **6:10:11** составляло 2:5:2, т.е. в случае стирола с акцепторным заместителем в кольце продукт иодсульфонамидирования преобладал. С винилциклогексаном были получены продукты **6:7:12:13** в соотношении 6:2:5:10. Наконец, с α-метилстиролом **5** были выделены только соединение **6** и иодоспирт **14**.

Рис. 1. Структура молекулы *N*-(4-иодфенил)трифторметансульфонамида **6**.

Строение продуктов **6** и **7** доказано методом ЯМР спектроскопии, а также наличием в ИК спектре полосы v(NH) при 3260–3285 см⁻¹. Для соединения **6** структура была однозначно установлена методом рентгеноструктурного анализа (Рис. 1).

Структура аддуктов 8, 10, 12, содержащих атом иода в фенильном кольце, доказана методами элементного анализа и ЯМР спектроскопии. Наиболее информативными являются спектры ЯМР ¹³С, которые показывают сдвиг сигнала С–N соединения 12 в сильное поле на ~8 м.д. по сравнению с соединениями 8 и 10, и очень сильный сдвиг в слабое поле сигнала С–I от 2 м.д. в 8, 10 до 40 м.д в 12. Структура 12 подтверждена *j*-mod спектром ¹³С, который показал присутствие групп СНІ и CH₂N. Структура соединения 10 доказана методом РСА (рис. 2).

Рис. 2. Структура молекулы *N*-[1-(4-хлорфенил)-2-иодэтил]-*N*-(4-иодфенил)трифламида **10**.

Продукты 6, 7 являются продуктами электрофильного ароматического замещения в *N*-фенилтрифламиде 1 под действием *t*-BuOI как источника катиона I⁺. Образование продуктов 8, 10, 12 и отсутствие их неиодированных в кольце аналогов означает, что фенильное кольцо в соединении 1 подвергается атаке *t*-BuOI раньше, чем атом азота в сульфонамиде.

Это неожиданный результат, так как ранее галогенирование ароматического цикла в той же окислительной системе в реакциях трифламида со стиролами не наблюдалось. Можно предположить следующий возможный механизм реакции (схема 2):

Для выяснения причин необычного поведения *N*-фенилтрифламида **1** были проведены квантовохимические расчёты. Анализ энергии и структуры B3MO (высших занятых молекулярных орбиталей) молекул TfNH₂ и TfNHPh указывает на предпочтительность иодирования фенильного кольца по сравнению с атомом азота амида **1**. B3MO амида **1**

Схема 2

лежит на 2.1 ккал/моль выше, чем у трифламида и локализована в основном на бензольном кольце, в отличие от ВЗМО трифламида, локализованной почти полностью на *p*-орбитали атома азота. Это согласуется с наблюдаемым ароматическим иодированием с образованием соединений **6** и **7**. При этом возникает вопрос, почему в реакциях стиролов в этой же системе не наблюдалось электрофильного иодирования по фенильному кольцу субстрата? Очевидно, это объясняется образованием стабильных катионов бензильного типа при присоединении катиона иода к β-углероду винильной группы стиролов.

Расчеты позволили объяснить и разную региоселективность иодтрифламидирования винилциклогексана 4 по сравнению со стиролами 2 и 3. Электрофильная C_{β} -атака двойной связи катионом иода, генерируемым из $IC_6H_4N(Tf)I$, приводящая к вторичным карбокатионам **A**, должна быть предпочтительнее, чем C_{α} -атака, приводящая к менее стабильному первичному карбокатиону **B**. Однако для R = циклогексил расчет показал, что образуется циклический катион иодония **C** (схема 3):

Схема 3

Это означает, что образование продукта 12 связано со стерической доступностью атома C_{β} в катионе C. Отметим, что в реакции винилциклогексана 4 с трифламидом линейные продукты трифламидирования не были выделены. В отличие от продукта 12, второй продукт окислительного присоединения к алкену 4, иодгидрин 13, содержит атом иода и циклогексильную группу у вицинальных атомов углерода. Это означает, что раскрытие иодониевого кольца нуклеофилом OH⁻, не создающим стерических препятствий, происходит как C_{α} -атака, определяемая электронными, а не стерическими факторами.

2. Взаимодействие *N.N'*-бис(трифторметансульфонамидо)метана со стиролом в системе *t*-BuOCl-NaI-MeCN

С целью получения имидазолинов, предполагая, что реакция стирола с *N.N'*бис(трифторметансульфонамидо)метаном **15** пойдет как [2+3]-циклоприсоединение с участием обоих трифламидных остатков в молекуле **15**, мы провели взаимодействие в тех же условиях (схема 4):

Однако ни при охлаждении до -30° С, ни при комнатной температуре, ожидаемый 4фенил-1,3-бис(трифлил)имидазолидин 16 не был зафиксирован в реакционной смеси, а были выделены полученные ранее иодгидрин 9, продукт бис-трифламидирования 19, трифламид 18 и *N*,*N'*-бис(трифторметилсульфонил)мочевина 17, идентифицированные с помощью ИК и ЯМР спектроскопии и сравнения с литературными данными. Влияние температуры сводится к снижению суммарного выделенного выхода продуктов 9, 17–19 с 80% при –30 °C до 51% при комнатной температуре, очевидно, из-за меньшего осмоления реакционной смеси при низкой температуре, и изменению соотношения продуктов 9:17:18:19 с 29:26:19:6 при –30 °C до 10:18:8:15 при комнатной температуре. Дизамещенная мочевина 17 была получена ранее $\mathcal{Л}$. *М. Ягупольским и сотр.* гидролизом бис(трифлил)хлороформамидина TfNHC(Cl)=NTf. Мы предположили, что продукт 17 образуется в результате окисления *N*,*N*'-бис(трифторметилсульфониламидо)метана 15 в условиях реакции без участия стирола. Для проверки мы провели реакцию в отсутствие стирола, и выделили соединения 17 (77%) и 18 (21%) с практически количественным суммарным выходом. Это свидетельствует о том, что мочевина 17 и продукты 9, 18, 19 образуются независимо друг от друга, вероятно, по следующему механизму (схема 5):

CXEMA 5 18 + TfNHCH₂OH $\xrightarrow{H_2O}$ 15 $\stackrel{[O]}{\longrightarrow}$ 17 \downarrow [O] 18 + CO₂ + H₂O 19 $\xrightarrow{[O]}$ Ph + 18 $\xrightarrow{[I^+]}$ Ph $\xrightarrow{+}$ I $\xrightarrow{\text{TfNH}}$ 9

Таким образом, идут два независимых процесса. Первый – это окисление реагента до *N*,*N*'-бис(трифторметилсульфонил)мочевины и его гидролиз следами воды в реакционной массе до трифламида и промежуточного оксиметилтрифламида, окисляющегося далее до трифламида, CO₂ и воды, и второй – бис-трифламидирование стирола и образование иодоспирта **9**.

3. Реакции окислительного сульфонамидирования *N*-аллил- и *N*,*N*-диаллилтрифторметансульфонамида в системе *t*-BuOCl-NaI-MeCN

Особый интерес представляют ненасыщенные производные трифламида, поскольку присутствие кратной связи, на которую оказывает влияние сильная электроноакцепторная трифторметансульфонильная группа, увеличивает синтетический потенциал этих соединений.

Взаимодействие *N*-аллилтрифламида TfNHCH₂CH=CH₂ **20** с трифламидом в ацетонитриле в присутствии системы (*t*-BuOCl+NaI) приводит с количественным выходом к симметричному *N*,*N'*,*N''*-пропан-1,2,3-триилтрис(трифламиду) **21** (схема 6):

Схема 6

Его состав и строение доказаны методами элементного анализа, ИК и ЯМР спектроскопии. В частности, в ИК спектре присутствует полоса *v*NH при 3319 см⁻¹, в спектре ЯМР ¹H – сигналы протона NH и спиновой системы ABX (CHCH₂) в соотношении 3:1:2:2, в спектре ЯМР ¹³С – два квартета CF₃ в соотношении 1:2, и в спектре ЯМР ¹⁹F – также два сигнала в соотношении 1:2.

Для сравнения мы провели в тех же условиях реакцию *N*-аллилтрифламида с аренсульфонамидами $4-RC_6H_4SO_2NH_2$ (R = Me, H, Cl, NO₂) 22–25. К нашему удивлению, единственным продуктом с аренсульфонамидами, выделенным с хорошим выходом, оказался пиперазин 26 (схема 7):

Это означает, что аренсульфонамиды действуют только как хлорирующие агенты, независимо от их NH-кислотности, которая значительно ниже чем у трифламида (рКа варьируется от 11.70 для TsNH₂ 9.48 для NsNH₂, и до 6.39 у TfNH₂). Однако, выход продукта в целом увеличивается по мере уменьшения pK_a аренсульфонамида (таблица 2).

Таблица 2 Выход (%) пиперазина 26 в реакции N-аллилтрифламида 20 с амидами 22-25

№	Амид	Конверсия	Выход 26 , (%)
1	22	70	50
2	23	51	76
3	24	43	53
4	25	69	86

Структура пиперазина 26 доказана методами масс-спектрометрии, ИК, ЯМР спектроскопии, в частности, отсутствием полосы vNH в ИК спектре и сигналов NH-группы в спектре $ЯMP^{-1}H$, наличием сигналов двух пар диастереотопных метиленовых протонов в диапазоне 3.6-4.1 м.д., сигнала метинового протона при 4.25 м.д. и соответствующих сигналов в спектре ЯМР ¹³С при 40, 42 и 55 м.д. и одного сигнала CF₃ группы.

Масс спектр показал наличие низкоинтенсивного пика молекулярного иона с m/z 446 и интенсивных пиков ионов с m/z 397 [$M - CH_2Cl$] и 263 [$M - CF_3SO_2 - HCl$] с надлежащим распределением изотопов. Окончательно структура 26 была доказана методом РСА для кристалла, выращенного из раствора в ацетонитриле как смеси энантиомеров (2S,5R)- и (2*R*,5*S*)-2,5-бис(хлорметил)-1,4-бис[(трифторметил)сульфонил]пиперазина (рис. 3).

Были также изучены реакции N,Nдиаллилтрифламида TfN(CH₂CH=CH₂)₂ 27 с трифламидом и аренсульфонамидами 22-25. В реакции с трифламидом образуется ряд линейных и циклических продуктов с общим выходом умеренным И В сопоставимых количествах (схема 8):

Рис. 3. Структура молекулы пиперазина 26.

При эквимольном соотношении реагентов при –10 °C, реакционная смесь содержит моноаддукт 28, 3,7-дииод-1,5-бис(трифторметилсульфонил)-1,5-диазокан 30 и 3,7,9трис(трифторметилсульфонил)-3,7,9-триазабицикло[3.3.1]нонан 31, вместе с небольшим количеством непрореагировавшего субстрата 27. С двукратным избытком трифламида при -30 °C наблюдается полная конверсия реагентов и образование, кроме продуктов 28, 30 и 31, диаддукта 29. Все продукты реакции выделены как индивидуальные соединения и их структура установлена с помощью ¹H, ¹³C, ¹⁹F ЯМР спектроскопии, а для соединений **30** и **31** доказана методом РСА (рис. 4 и 5).

Рис. 4. Структура молекулы 3,7-дииод-1,5-

бис(трифторметилсульфонил)-1,5-диазокана 30

Рис. 5. Структура молекулы 3,7,9трис(трифторметилсульфонил)-3,7,9триазабицикло[3.3.1]нонана 31

Как и с N-аллилтрифламидом 20, мы провели для сравнения реакцию N,Nдиаллилтрифламида 27 с аренсульфонамидами 22–25. Оказалось, что реакция идет только по одной двойной связи и приводит к продуктам иодоамидирования 32–35, и их изоэлектронному аналогу, продукту иодхлорирования 36 (схема 9):

Схема 9

Таблица 3

Выход (%) продуктов 32-36 в реакции N,N-диаллилтрифламида 27 с аренсульфонамидами 22-25

N⁰	Сульфонамид	Конверсия	Выход ^а (%)		
					36
1	22	25	32	42	-
2	23	41	33	29	41
3	24	45	34	-	43
4	25	44	35	-	42

^а Выходы с учётом конверсии

Механизм окислительного трифламидирования соединения 20 включает в качестве основного промежуточного реагента N-иодтрифламид 37, который присоединяется к двойной связи субстрата 20 с образованием промежуточного аддукта 38 с дальнейшим элиминированием молекулярного иода под действием активного реагента 37 и образованием конечного продукта 21 (схема 10):

Неожиданное образование замещенного пиперазина **26** в реакции на схеме 7 могло бы указывать на протекание реакции без участия иодида натрия. Однако, специальный эксперимент показал, что в отсутствие NaI образование пиперазина **26** не происходит. Это позволяет предположить следующий возможный механизм реакции, представленный на схеме 11, включающий образование промежуточного катиона иодония **39**, его раскрытие с образованием аддукта **40** и последующую циклодимеризацию до конечного продукта **26** (схема 11):

Механизм образования бициклононана **31** зависит от направления превращения диаддукта **29**, как показано на схеме 12:

Путь *а* включает циклизацию до *N*,*N*'-{[1,4-бис(трифторметилсульфонил)пиперазин-2,6-диил]диметандиил}бис(трифламида) **41**, который, в конечном итоге, дает бицикл **31** путем элиминирования молекулы трифламида. Альтернативный путь б вряд ли возможен, поскольку два атома иода в 8-членном цикле **30** располагаются слишком далеко друг от друга, находясь в экваториальных положениях конформации *кресло, кресло.* Действительно, специальный эксперимент показал, что соединение **30**, взятое отдельно, не превращается в бицикл **31** в условиях реакции, что позволяет исключить путь б.

Таким образом, мы показали, что ненасыщенные производные трифламида, как субстраты в окислительных реакциях с трифламидом и аренсульфонамидами в системе (*t*-BuOCl + NaI), дают новых линейные, циклические и бициклические продукты, строение которых зависит от условия реакции и природы реагентов. В случае *N*-аллилтрифламида, трифламид и аренсульфонамиды проявляют различную реакционную способность. Трифламид дает продукты окислительного присоединения, тогда как аренсульфонамиды выступают исключительно как носители положительно заряженного атома хлора.

4. Реакции окислительного карбоксамидирования *N*-аллил- и *N*,*N*диаллилтрифторметансульфонамида в системе *t*-BuOCl–NaI–MeCN

В данном разделе описаны реакции окислительного амидирования *N*-аллил- и *N*,*N*диаллилтрифторметансульфонамида в тех же условиях, что и выше, но с изменением типа реагента путем перехода от сульфонамидов к карбоксамидам, как фторсодержащим, так и нефторированным – трифторацетамиду **42**, ацетамиду **43** и бензамиду **44**.

Оказалось, что взаимодействие *N*-аллилтрифламида с трифторацетамидом идет полностью аналогично реакции с аренсульфонамидами **22–25**, т.е. с образованием пиперазина **26** (схема 13), хотя и с меньшим по сравнению с сульфонамидами – 46%. С *N*,*N*-диаллилтрифламидом **27** трифторацетамид **42** реагирует, как и аренсульфонамиды **22–25**; при этом, как и с TsNH₂, образуется только продукт иодоамидирования **27** – CH₂=CHCH₂–N(Tf)–CH₂CH(I)CH₂NHC(O)CF₃ (**45**) с невысоким выходом 31%. С *N*-аллилтрифламидом ацетамид **43** и бензамид **44** реагируют аналогично трифторацетамиду, давая пиперазин **26** с примерно таким же выходом (69 и 75%), хотя и с более высокой конверсией (83 и 89% против 64% у трифторацетамида). Таким образом, со всеми карбоксамидами реакции идут одинаково, но отлично от реакции с трифламидом, количественно приводящей к продукту **21**.

Взаимодействие ацетамида и бензамида с *N*,*N*-диаллилтрифламидом идет иначе, чем с трифторацетамидом. Продукт иодоамидирования типа **45** не образуется, а получается тот же продукт галогенирования, что и с аренсульфонамидами, содержащими электроноакцепторные заместители, т.е. *N*-аллил-*N*-(3-хлор-2-иодпропил)трифламид **36** (схема 13).

Для объяснения различного направления реакции с амидами 42–44 был проведен расчет электронного строения^{*} *N*-хлор- и *N*-иодзамещенных амидов RCONHX ($R = CF_3$, Me, Ph; X = Cl, I). Расщепление связи N–I с образованием катиона I⁺ оказалось на 74 ккал/моль легче, чем связи N–Cl, что объясняет отсутствие продуктов хлорамидирования. Наблюдаемая региоселективность реакции объясняется предпочтительным раскрытием промежуточного иодониевого иона **39** (схема 11) по связи C–I со стороны стерически более доступного метиленового атома углерода.

Таким образом, направление реакции *N*-аллил и *N*,*N*-диаллилтрифламида с карбоксамидами в системе *t*-BuOCl + NaI и строение образующихся продуктов зависит от наличия в молекуле амида фторированного заместителя. Механизм реакции включает образование промежуточного иодониевого катиона, который раскрывается со стороны стерически наиболее доступного атома углерода метиленовой группы под действием аниона исходного амида или хлорид-аниона.

5. Взаимодействие аллильных производных гетероатомных соединений с трифторметансульфонамидом в окислительных условиях

В продолжение исследований были проведено сравнительное изучение реакций окислительного сульфонамидирования ряда гетероатомных непредельных субстратов в присутствии различных окислителей – N-бромсукцинимида (NBS), N-иодсукцинимида (NIS) и (*t*-BuOCl + NaI).

Реакции трифламида **18** с аллильными субстратами наглядно продемонстрировали зависимость направления взаимодействия от структуры субстрата, природы окислителя и условий реакции. Так, с аллилэтиловым эфиром **46** и аллилфениловым эфиром **47** в системе (*t*-BuOCl + NaI) при –30 °C образуются продукты бис(трифламидирования) **48** и **49** (схема 14):

Схема 14

 TfNH2
 +
 R
 t-BuOCl + NaI
 R
 0 NHTf

 18
 46, 47
 MeCN, -30°C
 NHTf
 NHTf

 R = Et (46, 48); Ph (47, 49).
 48 (68%), 49 (93%)
 48 (68%), 49 (93%)

В этих же условиях, реакция трифламида с диаллиловым эфиром **50** протекает иначе. Линейные аддукты не образуются. Были выделены два продукта гетероциклизации: 3-иодометил-4-трифлил-5-(трифламидометил)морфолин **51** и 3,7-дииодо-5-(трифлил)-1,5-оксазокан **52** (схема 15):

^{*} Расчеты выполнены д.х.н., проф. Б.А. Шаиняном методом MP2/6-311G(d,p) для атомов C, H, N, O, F, S, Cl и в базисе DGDZVP для атомов иода.

Структура продуктов **48**, **49**, **51**, **52** была доказана методами ¹H, ¹³C, ¹⁹F ЯМР спектроскопии, в частности, наличием двух различных CF_3 -групп в соединениях **48**, **49** и **51**. Структура гетероциклов **51** и **52** доказана методом РСА (рис. 6).

Сравнение структуры соединений **51** и **52** свидетельствует о различной региоселективности иодтрифламидирования эфира **50**, приводящего к этим двум продуктам. Действительно, в молекуле **51** атом иода находится у γ-углеродного атома по отношению к эфирному кислороду, тогда как в молекуле **52** оба атома иода находятся у β-углеродных атомов 8-членного гетероцикла.

Рис. 6. Структура соединений 51 и 52

Предположительный механизм иодтрифламидирования с дальнейшей циклизацией, приводящей, соответственно, к соединениям **51** и **52**, приведен на схеме 16:

Соединение **52** является кислородным аналогом 1,5-бис(трифлил)-3,7-дииодо-1,5диазокана **30**, полученного нами ранее по реакции *N*,*N*-диаллилтрифламида с TfNH₂ в той же окислительной системе (схема 8).

Взаимодействие аллилацетата с трифламидом в присутствии окислительной системы (*t*-BuOCl + NaI) привело к сильному осмолению, и выделить какие-либо продукты не удалось.

Удивительный результат был получен в реакции диаллил(диметил)силана **53** с трифламидом в той же окислительной системе. Реакция сопровождается сильным осмолением; тем не менее, нам удалось выделить два продукта, которые оказались идентичными тем, что были получены ранее в реакциях моно- или диаллилтрифламида: *N*,*N*',*N*''-пропан-1,2,3-триилтрис(трифламид) **21** (схема 6) с выходом 61% и 3,7,9-трис(трифторметилсульфонил)-3,7,9-триазабицикло[3.3.1]нонан **31** (схема 8) с выходом 28%. Полученный результат свидетельствует о расщеплении связи с С–Si в молекуле **53** (схема 17).

Схема 17

Для ответа на вопрос о химических превращениях силильной группы после десилилирования были изучены спектры ЯМР ²⁹Si реакционной смеси. Спектр содержал сигнал при -21 м.д., совпадающий с сигналом известного октаметилциклотетрасилоксана **54**, образующегося в качестве продукта окислительного десилилирования. Образование силоксана **54** (так называемого соединения **D**₄) подтверждается наличием сигнала при 0.09 м.д. в спектре ЯМР ¹H; оба сигнала практически идентичны приводимым в литературе для этого циклического силоксана.

Возможность десилилирования при взаимодействии трифламида с аллилсиланами, содержащими одну аллильную группу была изучена на примере реакции трифламида с аллил(метил)(дифенил)силаном 55. Оказалось, что в системе (*t*-BuOCl + NaI) и в этом случае происходит десилилирование с образованием *трет*-бутокси(метил)дифенилсилана 56 и метил(дифенил)силанола 57, как продуктов алкоголиза и гидролиза 55, а также уже известных соединений 21 и бицикла 31 (схема 18):

Схема 18

Аналогично идет и реакция трифламида с аллил(хлорметил)диметилсиланом **58**. В системе (t-BuOCl+NaI) реакция протекает также с образованием соединения **21** с выходом 55% в качестве единственного продукта (схема 19):

Схема 19

Однако, в отличие от реакции на схеме 18, выделить и идентифицировать какие-либо продукты, содержащие атом кремния, не удалось.

Направление взаимодействия аллильных субстратов с трифламидом резко меняется при переходе от системы (*t*-BuOCl + NaI) к NBS или NIS в качестве окислителей. Так, взаимодействие аллиловых эфиров 46 и 47 с трифламидом в присутствии NBS дает только линейные продукты 59 и 60, содержащие амидиновые группы. Соединения 59 и 60 образуются в результате вовлечения в реакцию молекулы растворителя (ацетонитрила) по типу реакции Риттера (схема 20):

В случае аллилэтилового эфира, кроме амидина **59**, был выделен N-[2-(трифламидо)пропил-3-этокси]ацетамид **61**. Состав и строение продуктов на схеме 20 доказаны методами спектроскопии ЯМР ¹H, ¹³C и ¹⁹F, HRMS и элементного анализа.

Наиболее неожиданным на схеме 20 является образование соединения **61**, которое формально является продуктом гидролиза и замены брома остатком трифламида в продукте **59**. Однако, из-за низкой нуклеофильности атома азота трифламида и высокой кислотности его NH-протона, возможен альтернативный механизм, приведенный ниже (путь 1 на схеме 21). На первом этапе атом брома замещается на OH группу, которая затем внутримолекулярно присоединяется по высокополярной электрофильной связи C=NTf, образуя промежуточный оксазол **A**. Последний может рециклизоваться по типу 'O-ring opening/N-ring closure' с образованием 2-метил-1-трифлил-5-(этоксиметил)имидазолидин-2-ола **B**. После раскрытия кольца с переносом протона от атома кислорода к трифламидному атому азота и образования карбонильной группы образуется конечный продукт **59**. Однако, специальный эксперимент (соединение **59** в водном ацетонитриле, соотношение = 1:4, 40°C, 3 ч) показал, что в данных условиях гидролиз **59** до **61** не идет. Поэтому мы считаем, что продукты **59** и **61** образуются независимо, из общего катиона бромония **C**, который может раскрываться путем разрыва связи CH₂–Br или CH–Br, давая соответственно амидины **59**, **60**, или продукт гидролиза **61** (путь 2 на схеме 21):

Схема 21

Более сильный электроноакцепторный эффект группы PhO ($\sigma_I = 0.38$) по сравнению с EtO ($\sigma_I = 0.26$) способствует раскрытию бромониевого цикла со стороны более удаленного (т.е. менее дестабилизированного) атома углерода CH₂, что объясняет различие в поведении аллилэтилового и аллилфенилового эфиров.

Выше отмечалось, что в системе (*t*-BuOCl + NaI) из-за сильного осмоления выделить какие-либо продукты реакции аллилацетата с трифламидом не удалось. В то же время, при использовании в качестве окислителя NBS, аллилацетат **62** хорошо реагирует с трифламидом, давая с 68%-ным выходом 2-бром-3-(N'-(трифлил)ацетамидамидо)пропил ацетат **63** (схема 22):

В присутствии NBS *N*,*N*-диаллилтрифламид **27** реагирует с трифламидом также в ином направлении в сравнении с аналогичными реакциями как с трифламидом (схема 8), так и с аренсульфонамидами (схема 9). Были выделены два продукта – амидин **64** и аддукт бромирования по одной двойной связи субстрата – дибромид **65** с хорошим общим выходом (схема 23). Состав амидина **64** подтвержден с помощью метода HRMS.

На данной схеме, в отличие от превращений на схеме 8, отсутствуют продукты гетероциклизации и основным здесь является соответствующий амидин **64**, который не образуется в присутствии (*t*-BuOCl + NaI) в том же растворителе.

Реакция диаллилового эфира 50 с трифламидом в присутствии NBS идет с сильным осмолением и выделить из реакционной смеси какие-либо продукты не удается. Однако, при замене NBS на NIS в качестве окислителя и проведении реакции при 0 $^{\circ}$ C, с выходом 64% был выделен амидин 66, структура и состав которого были установлены с помощью спектроскопии ЯМР и анализа методом HRMS (схема 24):

Существенно зависит от природы окислителя и реакция диаллилформаля **67** с трифламидом, при проведении как при комнатной температуре, так и охлаждении до 0°С в ацетонитриле. В присутствии (t-BuOCl+NaI) реакция идет с сильным осмолением и был

выделен лишь исходный трифламид. При замене окислителя на NBS реакция протекает с гидролизом субстрата и образованием единственного продукта трифламидирования по одной двойной связи с внедрением молекулы растворителя – амидина **68** с высоким выходом (схема 25):

Схема 25

Отметим, что триаллиламин, диаллил(диметил)силан, аллил(метил)дифенилсилан и аллил(хлорметил)диметилсилан не реагируют с трифламидом в присутствии NBS.

Примечательно, что все реакции, индуцированные N-галогенсукцинимидами, приводили к амидинам, тогда как ни в одной из реакций в системе (*t*-BuOCl + NaI) в том же растворителе амидины не образуются. По-видимому, причина такого отличия, носящего очевидно общий характер, заключается в том, что система (*t*-BuOCl + NaI) неизбежно содержит некоторое количество *трет*-бутанола и воды, которые, даже при тщательной осушке, будут генерироваться в системе благодаря высокой кислотности самого трифламида. Как следствие, наличие протонодоноров в реакционной смеси должно снижать нуклеофильную активность растворителя (ацетонитрила) за счет связывания неподеленной электронной пары нитрильного атома азота. Подобный эффект можно представить и в системе с N-галогенсукцинимидами, превращающимися в сукцинимид, однако в этом случае он должен быть гораздо слабее вследствие намного меньшей протонодонорной способности сукцинимида по сравнению со спиртом или водой.

Изучение взаимодействия полученных амидинов – продуктов типа Риттера – с основаниями позволило разработать эффективный метод синтеза N-трифлилзамещенных имидазолинов. Оказалось, что амидины **59**, **60** (схема 20), **63** (схема 22) и **64** (схема 23) под действием поташа в мягких условиях (при комнатной температуре) циклизуются в соответствующие 5-замещенные 2-метил-1-трифлил-2-имидазолины **69–72** с отличными выходами (>90%) (схема 26).

Схема 26

По плохо понятным причинам, с морфолином **51** (схема 15) и с амидинами **66** (схема 24) и **68** (схема 25) в тех же условиях внутримолекулярное дегидрогалогенирование с гетероциклизацией не идет – из реакционной смеси возвращаются непрореагировавшие исходные вещества, хотя можно было ожидать, что соединение **51** даст бициклическое соединение 7,9-бис(трифлил)-3-окса-7,9-диазабицикло[3.3.1]нонан – кислородный аналог соединения **31**.

6. Конкурентная ассоциация N,N'-(3-алкоксипропан-1,2-диил)-бис(трифламидов) и N-(5-иодометил)-4-[(трифлил)морфолин-3-ил)метил]трифламида в различных агрегатных состояниях^{*}

Многие продукты, описанные в предыдущем разделе, представляют интерес не только как потенциально биологически активные вещества, содержащие фармакофорный сульфонамидный фрагмент, но и как объекты для исследования возможных ассоциатов, связанных внутримолекулярными (BBC) и межмолекулярными (MBC) водородными связями, поскольку в их молекулах имеется несколько основных и кислотных центров различной природы. Ниже кратко изложены основные результаты такого исследования на примере соединений **48**, **49** и **51**, содержащих в качестве основных центров эфирные и сульфонильные атомы кислорода, а в качестве кислотного центра – группу TfNH.

Исследования были проведены методом ИК спектроскопии в твёрдом состоянии, чистой жидкости, растворах и стеклообразном состоянии при разных температурах. Дополнительным стимулом к таким исследованиям было проведенное выше структурное изучение молекулы соединения **51**, позволившее сопоставить данные ИК спектральных исследований и теоретических расчетов со структурой вещества в кристалле. На рис. 7 представлен димер соединения **51** в кристалле и молекулярная упаковка.

Рис. 7. МВС в димере (слева) и молекулярная упаковка в кристалле 51 (справа).

Как видно из рис. 7, элементарная ячейка содержит две пары (3R,5S + 3S,5R)энантиомеров с *транс* ориентацией групп CH₂I и CH₂NHTf относительно кольца. Молекулы связаны MBC NH···O с участием эфирного кислорода морфолинового цикла длиной 2.078 Å. Были рассчитаны некоторые конформеры молекулы **51**, отличающиеся по энергии не более чем на 1.9 ккал/моль (рис. 8).

Рис. 8. Конформеры молекулы 51.

^{*} Совместно с Н.Н. Чипаниной и Л.П. Ознобихиной. Приведены только ключевые результаты и выводы.

В наиболее стабильном конформере **51a**, структура которого подобна полученной методом PCA, группа NH участвует в образовании BBC NH···O=S длиной 2.334 Å. Конформер **51b** содержит BBC NH···O (2.184 Å), а в конформере **51c** группа NH свободная. Конформеры линейных эфиров **48** и **49** приведены на (рис. 9).

Рис. 9. Конформеры молекул 48 и 49.

На рис. 10–12 представлены рассчитанные структуры циклических и цепочечных димеров, образуемых конформерами молекул **51**, **48** и **49**, (показаны только MBC NH···O или NH···O=S).

Рис. 10. Димеры соединения **51** и их относительные энергии ΔE_{rel} .

Рис. 11. Димеры соединения **48** и их относительные энергии ΔE_{rel} .

Рис. 12. Димеры соединения **49** и их относительные энергии ΔE_{rel} .

Экспериментально, образование ассоциатов различного типа доказано методом ИК спектроскопии, а именно, существенным отличием спектров образцов в разных агрегатных состояниях. Отнесение полос в ИК спектрах облегчается четко различимыми диапазонами валентных колебаний vNH: 3360–3420 см⁻¹ для свободных NH групп, 3280–3325 см⁻¹ для NH···O=S-связанных NH групп, и 3110–3170 см⁻¹ для NH···O-связанных NH групп. Анализ ИК спектров, основанный на такой градации полос и на соотношении их интенсивностей, позволяет сделать следующие выводы:

1) В растворе CCl₄, соединение **51** диссоциирует на мономерные молекулы со свободными группами NH, дающими интенсивную полосу при 3383 см⁻¹. При охлаждении раствора до температуры стеклования (246 K), появляется широкая слабая полоса при 3318 см⁻¹, принадлежащая ассоциатам с MBC NH···O=S, таких как симметричный циклический димер **73a** или цепочечный димер **73d** (рис. 11). В растворе CH₂Cl₂ наблюдается полоса свободных групп NH при 3360 см⁻¹, а также слабая полоса при 3170 см⁻¹ NH групп, вовлеченных в MBC типа NH···O, как в димере **69c** (рис. 11). Последний тип связывания наблюдается и в кристалле, что доказано методом PCA (рис. 7).

2) При охлаждении раствора в CH_2Cl_2 до 215 К появляется плечо при 3278 см⁻¹, указывающее на образование ассоциатов с MBC NH···O=S. В застеклованном растворе (при 205 К) преобладают NH···O-связанные ассоциаты, дающие полосу v(NH) при 3143 см⁻¹, более прочные, чем в кристаллическом соединнении, выделенном из CH₂Cl₂.

3) Соединения **48** и **49** дают два типа ассоциатов – с MBC NH···O=S [v(NH) 3306 см⁻¹] и NH···O [v(NH) = 3110 см⁻¹], с преобладанием ассоциатов первого типа, как следует из большей интенсивности полосы при 3306 см⁻¹.

4) В отличие от **51**, в растворах соединений **48** и **49** в CCl₄, NH···O- и NH···O=Sсвязанные ассоциаты имеют примерно одинаковую стабильность и присутствуют в сравнимых количествах, наряду с мономерами со свободными NH группами.

5) В растворах **48** и **49** в CCl₄ при температуре стеклования (253 K) преобладают NH···O=S-связанные ассоциаты (интенсивная полоса 3300 см⁻¹). В растворе CH₂Cl₂, соединения **48** и **49** при комнатной температуре существуют в основном в виде мономеров со свободными NH группами и NH···O=S-ассоциатов (полоса 3345 см⁻¹). При температуре стеклования раствора (225 K) остаются только ассоциаты в основном NH···O=S типа (интенсивная полоса 3310 см⁻¹), и малая доля NH···O типа (слабая полоса 3110 см⁻¹).

6) Частоты v(NH) при комнатной температуре указывают на близкую прочность MBC NH···O=S в ассоциатах **48** и **49**, тогда как прочность NH···O связей больше у **48**. В растворе CH₂Cl₂ при температуре стеклования эти различия нивелируются.

выводы

- Проведено систематическое исследование реакций трифламидов, аренсульфонамидов и трифторацетамида с алкенами и диенами, в том числе функциональнозамещенными, в различных окислительных системах. Показано, что направление реакции и состав продуктов существенно зависят от природы амидирующего реагента, субстрата и окислительной системы.
- 2. *N*-Фенилтрифламид не дает продуктов амидирования алкенов в системе (*t*-BuOCl + NaI), а превращается в продукты электрофильного ароматического замещения иодсульфонамидирования алкенов образующимися иодфенилтрифламидами, а также продукты оксигалогенирования и галогенирования двойной связи.
- 3. *N.N'*-Бис(трифторметилсульфониламидо)метан в реакции со стиролом в указанных условиях гидролизуется и окисляется до *N*,*N'*-бис(трифлил)замещенной мочевины и трифламида, который реагирует со стиролом по изученной ранее схеме.
- 4. Исследованы реакции N-аллилтрифламида и N,N-диаллилтрифламида с трифламидом, аренсульфонамидами и трифторацетамидом в системе (*t*-BuOCl + NaI). Показано, что:

а. *N*-Аллилтрифламид реагирует с трифламидом, количественно образуя пропан-1,2,3-триилтрис(трифламид), тогда как аренсульфонамиды и трифторацетамид реагируют исключительно как переносчики хлора, давая *mpaнc*-2,5-бис(хлорметил)-1,4-бис(трифлил)пиперазин с выходами от умеренных до высоких.

б. *N*,*N*-Диаллилтрифламид с трифламидом дает продукты моно- и бис(иодтрифламидирования), 3,7-дииод-1,5-бис(трифлил)-1,5-диазокан и 3,7,9-трис(трифлил)-3,7,9триазабицикло[3.3.1]нонан в соотношении, зависящем от соотношения реагентов. Аренсульфонамиды и трифторацетамид дают продукты иодамидирования и/или иодхлорирования с умеренными выходами лишь по одной двойной связи.

- 5. Аллиловые эфиры в системе (*t*-BuOCl + NaI) с трифламидом дают продукты бистрифламидирования с высоким выходом. В присутствии NBS или NIS в MeCN, аллиловые эфиры дают продукты внедрения растворителя амидины. Диаллиловый эфир в системе (*t*-BuOCl + NaI) образует с трифламидом 3-иодометил-4-трифлил-5-(трифламидометил)морфолин и 3,7-дииодо-5-(трифлил)-1,5-оксазокан, а в присутствии NIS продукт иодотрифламидирования типа Риттера только по одной связи субстрата.
- 6. Диаллил(диметил)силан в реакции с трифламидом в системе (t-BuOCl + NaI) претерпевает десилилирование с образованием циклического силоксана D₄ и известных продуктов окислительного трифламидирования моно-И диаллилтрифламида. В случае реакции аллил(метил)(дифенил)силана с трифламидом в были той же системе выделены, кроме выше указанных продуктов трифламидирования, продукты гидролиза и алкоголиза исходного субстрата.
- 7. Методами РСА и ИК спектроскопии, а также квантово-химических расчетов установлено, что в *N*,*N*'-(3-алкоксипропан-1,2-диил)-бис(трифламидах) и *N*-(5-иодометил)-4-[(трифлил)морфолин-3-илметил]трифламиде в зависимости от их фазовых состояний происходит конкурентное образование *H*-связанных ассоциатов различного типа.

Основные результаты диссертационной работы изложены в следующих публикациях:

 Shainyan, B. A. Oxidative addition/cycloaddition of arenesulfonamides and triflamide to N-allyltriflamide and N, N-diallyltriflamide / B. A. Shainyan, V. V. Astakhova, <u>A. S. Ganin</u>, M. Y. Moskalik, I. V. Sterkhova // RSC. Adv. – 2017. – V. 62, № 7. – P. 38951 – 38955.

2. Астахова, В. В. Взаимодействие N-аллилтрифламида и N,N-диаллилтрифламида с амидами карбоновых кислот в окислительных условиях / В. В. Астахова, М. Ю. Москалик, **А. С. Ганин**, Б. А. Шаинян // ЖОрХ. – 2018. – Т. 54, № 6. – С. 855 – 859.

3. Astakhova, V. V. Iodotriflamdation vs. electrophilic aromatic iodination in the reaction of N-phenyltriflamide with alkenes / V. V. Astakhova, M. Y. Moskalik, <u>A. S. Ganin</u>, I. V. Sterkhova, B. A. Shainyan // ChemistrySelect. -2018. - V. 3, No 21. -P. 5960 - 5964.

4. Москалик, М. Ю. Взаимодействие *N*,*N*'-бис(трифторметансульфонамидо)метана со стиролом в окислительных условиях / М. Ю. Москалик, В. В. Астахова, <u>А. С. Ганин</u>, Б. А. Шаинян // ЖОрХ. – 2019. – Т. 55, № 5. – С. 809 – 812.

5. Chipanina, N. N. New oxyalkyl derivatives of trifluoromethanesulfonamide. Dynamic rivalry between different types of chain and cyclic associates in different phase states / N. N. Chipanina, L. P. Oznobikhina, I. V. Sterkhova, <u>A. S. Ganin</u>, B. A. Shainyan // J. Mol. Struct. – 2020 – V. 1219 - P. 128534.

Ganin A. S. Heterocyclization and solvent interception upon oxidative triflamidation of allyl ethers, amines and silanes / <u>A. S. Ganin</u>, M. Yu. Moskalik, V. V. Astakova, I. V. Sterkhova, B. A. Shainyan // Tetrahedron. – 2020 – V. 76, № 33. – P. 131374.

7. Астахова В.В. Окислительное трифламидирование непредельных соединений трифламида / В.В. Астахова, М.Ю. Москалик, <u>А.С. Ганин</u>, И.В. Стерхова // V научные чтения, посвященные памяти академика А. Е. Фаворского: Тезисы докладов школы-конференции молодых ученых с международным участием. – Иркутск, Россия. – 2017. – С. 68.

8. Москалик М.Ю. Реакции производных трифламида в окислительных условиях / М.Ю. Москалик, В.В. Астахова, <u>А.С. Ганин</u>, Б.А. Шаинян // Химия и химическая технология в XXI веке, конференция посвященная памяти профессора Л.П.Кулёва: Статья в сборнике трудов XX международной научно-практической конференции. – Томск, Россия. – 2019. – С. 188-189.

9. Астахова В.В. Окислительное трифламидирование аллилсодержащих субстратов / В.В. Астахова, М.Ю. Москалик, <u>А.С. Ганин</u>, И.В. Стерхова // VI научные чтения, посвященные памяти академика А. Е. Фаворского: Тезисы докладов школы-конференции молодых ученых с международным участием. – Иркутск, Россия. – 2020. – С. 22.

Основные результаты получены с использованием материально-технической базы Байкальского аналитического центра коллективного пользования СО РАН.